Period:

Date:

Practice Worksheet: Describing Polynomials

- 1. An ______ degree polynomial must have at least one real zero.
- 2. A polynomial function is written in ______ if its terms are written in descending order of exponents from left to right.
- 3. The ______ is the number in front of the term with the highest exponent in the polynomial.
- 4. A ______ is a polynomial with one term, a ______ has two terms, and a ______ has three terms.
- 5. It is possible for an ______ degree polynomial to have no real zeros.
- 6. The ______ is used to determine the end behavior of the graph of a polynomial function.

Write each polynomial in standard form and state the degree, type, leading coefficient, and draw arrows indicating the end behavior. The first example has been done for you.

	Standard Form	Degree	Classify by degree	Classify by number of terms	LC	End Behavior
<i>Example:</i> $y = 7 - 2x$	y = -2x + 7	1	linear	binomial	-2	$\uparrow\downarrow$
$7. y = 2x - x^3 + 8$						$\uparrow\downarrow$
8. $y = 3x^2 + x^3 - (x^3 + x^2)$						
9. $y = (2x)^3 + 3x - 1$						
10. $y = (x + 2)^2 + 3$						
11. $y = (2 + x)(2 - x) - 4$						
12. $y = 3(x+1)^2 - 3x^2$						
13. $y = 2x - 2(x - 3)$						

Describe the end behavior of the graph of the polynomial function WITHOUT graphing.

14. $y = 4x - 2 + 5x^5$	15. $y = -5x^3$	16. $y = -12x^6 - 2x + 5$
as $x \to -\infty, y \to$	as $x \to -\infty$, $y \to ____$	as $x \to -\infty$, $y \to _$
and as $x \to \infty$, $y \to $	and as $x \to \infty, y \to ____$	and as $x \to \infty$, $y \to _$
17. $y = 6 - 2x + 4x^2 - 5x^3$	18. $y = 1 - x^6 - 1 + 2x^6$	19. $y = 2x^5 - 7x^2 - 4x$
as $x \to -\infty, y \to$	as $x \to -\infty$, $y \to ____$	as $x \to -\infty$, $y \to _$
and as $x \to \infty, y \to$	and as $x \to \infty, y \to$	and as $x \to \infty$, $y \to ____$

Match the polynomial function with its graph WITHOUT using a graphing calculator.

