Practice Worksheet: Describing Polynomials

1. An \qquad degree polynomial must have at least one real zero.
2. A polynomial function is written in \qquad
\qquad if its terms are written in descending order of exponents from left to right.
3. The \qquad is the number in front of the term with the highest exponent in the polynomial.
4. A \qquad is a polynomial with one term, a \qquad has two terms, and a
\qquad has three terms.
5. It is possible for an \qquad degree polynomial to have no real zeros.
6. The \qquad
\qquad
\qquad is used to determine the end behavior of the graph of a polynomial function.

Write each polynomial in standard form and state the degree, type, leading coefficient, and draw arrows indicating the end behavior. The first example has been done for you.

	Standard Form	Degree	Classify by degree	Classify by number of terms	LC	End Behavior
Example: $y=7-2 x$	$y=-\mathbf{2 x + 7}$	$\mathbf{1}$	linear	binomial	$\mathbf{- 2}$	T
7. $y=2 x-x^{3}+8$						个
8. $y=3 x^{2}+x^{3}-\left(x^{3}+x^{2}\right)$						
9. $y=(2 x)^{3}+3 x-1$						
10. $y=(x+2)^{2}+3$						
11. $y=(2+x)(2-x)-4$						
12. $y=3(x+1)^{2}-3 x^{2}$						
$13 . y=2 x-2(x-3)$						

Describe the end behavior of the graph of the polynomial function WITHOUT graphing.
14. $y=4 x-2+5 x^{5}$
as $x \rightarrow-\infty, y \rightarrow$ \qquad
and as $x \rightarrow \infty, y \rightarrow$ \qquad
17. $y=6-2 x+4 x^{2}-5 x^{3}$
as $x \rightarrow-\infty, y \rightarrow$ \qquad
and as $\mathrm{x} \rightarrow \infty, y \rightarrow$ \qquad
15. $y=-5 x^{3}$
as $x \rightarrow-\infty, y \rightarrow$ \qquad and as $x \rightarrow \infty, y \rightarrow$ \qquad
18. $y=1-x^{6}-1+2 x^{6}$
as $x \rightarrow-\infty, y \rightarrow$ \qquad
and as $x \rightarrow \infty, y \rightarrow$
16. $y=-12 x^{6}-2 x+5$
as $x \rightarrow-\infty, y \rightarrow$ \qquad and as $x \rightarrow \infty, y \rightarrow$ \qquad
19. $y=2 x^{5}-7 x^{2}-4 x$
as $x \rightarrow-\infty, y \rightarrow$ \qquad
and as $x \rightarrow \infty, y \rightarrow$ \qquad

Match the polynomial function with its graph WITHOUT using a graphing calculator.
A.

D.

G.

B.

H.

-
23. $y=2 x^{3}-3 x+1$
\qquad 24. $y=-2 x^{2}-5$
25. $y=x^{4}+2 x^{3}$
C.

I.

_-26. $y=-\frac{1}{3} x^{3}+x^{2}-\frac{4}{3}$
_2 27. $y=-\frac{1}{4} x^{4}+3 x^{2}$
28. $y=\frac{1}{5} x^{5}-2 x^{3}+\frac{9}{5} x$

